Matrices of Finite Abelian Groups, Finite Fourier Transform and Codes

نویسندگان

  • SHIGERU KANEMITSU
  • MICHEL WALDSCHMIDT
چکیده

Finite (or Discrete) Fourier Transforms (FFT) are essential tools in engineering disciplines based on signal transmission, which is the case in most of them. FFT are related with circulant matrices, which can be viewed as group matrices of cyclic groups. In this regard, we introduce a generalization of the previous investigations to the case of finite groups, abelian or not. We make clear the points which were not recognized as underlying algebraic structures. Especially, all that appears in the FFT in engineering has been elucidated from the point of view of linear representations of finite groups. We include many worked-out examples for the readers in engineering disciplines.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum Error-Correction Codes on Abelian Groups

We prove a general form of bit flip formula for the quantum Fourier transform on finite abelian groups and use it to encode some general CSS codes on these groups.

متن کامل

Rank-deficient submatrices of Fourier matrices

We consider the maximal rank-deficient submatrices of Fourier matrices. We do this by considering a hierarchical subdivision of these matrices into low rank blocks. We also explore some connections with the FFT, and with an uncertainty principle for Fourier transforms over finite Abelian groups.

متن کامل

Control/target Inversion Property on Abelian Groups

We show that the quantum Fourier transform on finite fields used to solve query problems is a special case of the usual quantum Fourier transform on finite abelian groups. We show that the control/target inversion property holds in general. We apply this to get a sharp query complexity separation between classical and quantum algorithms for a hidden homomorphism problem on finite abelian groups.

متن کامل

Harmonic Analysis on Finite Abelian Groups

We give a discussion of harmonic analysis on finite abelian groups, emphasizing various ways in which the structure of the group is encoded on various spaces of functions, ways in which the Fourier transform detects and preserves these structures. We discuss the major tools, like convolutions and Fourier transforms, along with some fundamental theorems, like the Plancheral, Parseval, Fourier in...

متن کامل

Remarks on Efficient Computation of the Inverse Fourier Transforms on Finite Non-Abelian Groups

The Fourier transform is a classical method in mathematical modeling of systems. Assuming finite non-Abelian groups as the underlying mathematical structure might bring advantages in modeling certain systems often met in computer science and information technologies. Frequent computing of the inverse Fourier transform is usually required in dealing with such systems. These computations require ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012